Kerbal Space Program - Bug #13508

Equatorial satellite contracts actually require correct LAN

01/02/2017 04:33 PM - root

Status: Confirmed Start date: 01/02/2017 Severity: Low % Done: 10% Assignee: Category: Gameplay Target version: Version: 1.2.2 Language: English (US) Platform: Windows Mod Related: No

Expansion: Description

Equatorial satellite launches do not specify a longitude of ascending node, but the contract still checks this when evaluating the orbit. If you place a satellite into an orbit that is a rotation of the target orbit, the contract will not be fulfilled.

This can be fixed by one of the following:

- 1. contract evaluation looks only at the orbit's argument of periapsis, ignoring whether it actually matches the target orbit
- 2. contract window should show the longitude of ascending node value
- 3. equatorial contracts should only generate orbits with a longitude of ascending node of 0

given #2 or #3, i can fudge the correct orientation by offsetting by my parking orbit's AoN.

my vote would be for #3.

History

#1 - 07/01/2018 12:13 AM - Anonymous

- Category set to Gameplay
- Status changed from New to Confirmed
- % Done changed from 0 to 10

A confirming example came up recently on the forum

https://forum.kerbalspaceprogram.com/index.php?/topic/176209-matching-longitude-of-ascending-node-for-satellite-contract/

In that context, I thought through how software could test the shape of orbit, even when the angular parameters are ill-defined. At some point the orbit is drawn using a 3D representation

 $\mathbf{r} = p \left(\mathbf{u} \cos\theta + \mathbf{v} \sin\theta \right) / \left(1 + \mathbf{e} \cdot \mathbf{v}^* \cos\theta + \mathbf{e} \cdot \mathbf{v}^* \sin\theta \right)$

with unit vectors \mathbf{u} and \mathbf{v} in the plane of the orbit, latus rectum p, and eccentricity vector \mathbf{e} . The eccentricity vector and specific angular momentum $\mathbf{L} = \mathbf{u} \times \mathbf{v}$ *sqrt(p/GM) are physically-meaningful vectors that do not depend on parameterization. The contract goal could be to get an orbit with vector \mathbf{L} to match the \mathbf{L} of the orbit within 5% the magnitude of the target \mathbf{L} , and \mathbf{e} within 0.05 the target-orbit's \mathbf{e} .

Files

screenshot276.png 1.03 MB 01/02/2017 root

04/25/2024 1/1